【行业资讯】一文解读矩阵的定义和矩阵分拣的

来源:https://www.invabio.com 作者:物流管理 人气:154 发布时间:2019-09-13
摘要:在物流和电商行业迅速发展的今天,矩阵作为一种分拣场景解决方案,已被广泛应用。为满足场景多样性,以及场地对吞吐量、流向和效率的需求,矩阵经过不断演变,最终发展出多种

  在物流和电商行业迅速发展的今天,矩阵作为一种分拣场景解决方案,已被广泛应用。为满足场景多样性,以及场地对吞吐量、流向和效率的需求,矩阵经过不断演变,最终发展出多种不同形态,不再是单一模式。笔者在此结合自身规划项目经历和行业参观经验,经过研究和分析总结,认为矩阵并不真是如想象中那般单一简单,在此也分享下个人的分析总结成果,如有同行也欢迎一起交流探讨。

  虽然在业内矩阵应用已很普遍,但却没有明确的定义。不妨先由笔者结合个人理解给出:矩阵,是一种应用于流向分拣场景且存在进出线关系的输送线立体排布阵列。(如下图1)

  从硬件维度看,矩阵由投影相互垂直的进出线、分拣站台和分拣滑槽等组成;从流程环节看,矩阵由进货线(高位线)、流向分拣区和出货线(低位线)等组成;从产能设计看,矩阵含“吞”、“分”和“吐”3个方面的能力。从功能模块看,矩阵起包裹输送和流向分拣的作用。从流向分拣角度看,矩阵分拣区一般只操作包裹初分,不操作包裹细分。

  其运转流程一般为先由前端矩阵进线进行包裹传输,包裹经过平段拨货口(由站台和滑槽组成)时,按照提前设计的滑道号规则或分拣计划,由分拣员或自动化设备执行流向分拣操作。包裹经分拣滑槽被拨出至含某些流向的各条出线,最后再由出线传输至对应的作业区。

  通过本文,笔者将从处理件型、模式分类、与自动化分拣的关系、处理能力和对未来发展的总结思考等方面展开,给大家带来较系统全面的介绍。

  矩阵的处理件型一般只限小件(最长边≤400mm,重量≤5kg)和中件(400mm最长边≤800mm,5kg重量≤30kg)。除此之外的大件、易碎件和NC件(快递行业术语,包含超大、超重、超长、异型等件型等)不能上矩阵操作。

  矩阵进线经爬坡后被架高进入流向拨口分拣区,在各处流向拨口处通过直滑槽或90o螺旋滑槽将包裹拨至对应流向的低位出线,在出线后端再将线体高度调整至符合人工作业的高度(一般为750mm)。

  常见的爬坡架高式分2种。第一种如下图1的传统模式,矩阵分拣区立于高台库的库内平地。第二种则是先在库内搭建钢平台(一般钢平台的上表面设置离库内地面净高4500mm),再将矩阵分拣区架设在钢平台上,架高后钢平台底下区域可腾出作为车辆入库、NC件等功能区。矩阵进线将爬至较高的高度(离库内地面7600mm),在钢平台夹层上分至各流向出线后再通过螺旋滑槽或转弯下坡的方式,将线体引出降低至钢平台底下的区域进行操作。这种方式体现了场地规划中空间立体化设计的方向,大幅提高了空间利用率。

  ①考虑库房连通性,进线前端需预留人员和叉车通道(如W3000mm*H2500mm)

  ③架高线支撑柱脚较多(设置一体式支撑钢平台或采用吊装安装方式的情况除外),故需保证柱脚整齐排列,进行通道避让并做好防撞处理

  ④爬高后皮带机上表面超过3000mm的线体需设置维修平台。在合流处需设置疏堵平台

  ④输送线斜坡段较占用空间,如想实现矩阵自动化(需分段拉距),无法在斜坡段做拉距

  在卸车上线后,矩阵进线仍保持着平线段的方式进入矩阵的流向拨口作业区,在各拨口处通过滑槽(一般为直滑槽)将包裹拨至对应流向的低位出线,出线支撑水平面一般设置得比卸货水平面要低。

  较适用于BTO场地(Build to Order,定制化场地),在前期建筑设计阶段需将库房地面设置为带高度差的模式,也适用于平地库(需加装卸货月台)。此模式较适用2层矩阵(“挖空”深度小,高度差较小)。

  ①受库内净高限制较小,极限净高只需约2100mm(相对于卸货月台水平面)

  一般情况下,矩阵的所有进线和出线均设置在一块相对集中的作业区域,经同一条进线进入矩阵分拣作业区的相同流向的包裹,将由对应的滑槽分拣至同条出线上(即同进同流向将同出)。

  目前大多数分拣场景均采用此模式设计矩阵,在场地满足且矩阵规模适中的情况下,优先考虑将矩阵分拣区进行集中设置。

  在《建筑设计防火规范》的限定下,一般工厂丙二类的单层厂房最大防火分区面积不得超过1.6万m2,在此面积限定内矩阵最大规模大约为9进9出。如矩阵有更大的规模设置需求,一般有以下3种解决方案,可提供考虑:

  ①在场地满足的情况下,跨建筑防火分区搭建矩阵,并在输送线跨防火分区处设置消防翻转和防火卷帘门/消防水幕。(本质为1个一体式矩阵)

  ②若场地无法满足条件①的要求,则可按业务将矩阵进行拆分,拆分后矩阵的操作业务和出港流向完全独立,如可拆分为进港矩阵、出港矩阵等。(本质为多个一体式矩阵。根据场地情况,可设在同园区,也可设在不同园区)

  ③若场地无法满足条件①条件,且无法进行独立拆分,则可将矩阵设置为多个进行相互流向交换的分体式矩阵。(本质为分体式矩阵,以下将对此展开具体介绍)

  ①一荣独荣,一损俱损(简单理解,矩阵规模过大,基本不可能同时发挥所有进线的能力;某条出线爆线可能导致整体停线)

  在空间上,将较大规模的一体式矩阵拆分为多个较小规模的分体式矩阵。一般各分体式矩阵的进线、出线和流向分拣区都是独立设置的,但彼此间存在流向包裹交换(各分体式矩阵间必定存在业务、流向的交集)。

  如下图5,假设矩阵A和矩阵B互为分体式矩阵,则分体式矩阵A会将属于分体式矩阵B流向的包裹拨出到对应出线α,再通过连廊或输送线的方式,将出线α作为进线,重新进入分体式矩阵B进行分拣。

  当矩阵规模较大的情况下,为充分发挥其产能,可考虑将矩阵拆分,也可设置主矩阵带小矩阵的方式,如 “1个大矩阵+2个小矩阵”。

  ③一般地,假设分布式矩阵有n个,在不经过中间矩阵中转时,分得越多越复杂,理论最多需求的交换线数可用数列an=n*(n-1)表示,即0,2,6,12,20,···,n*n(n-1)。举例,如0表示1个一体式矩阵,其交换线个互为分体式的矩阵,其交换线。后续以此进行类推(仅为理论表达方式,目前业内暂未出现超过数量为3的分体式矩阵)

  ③大促或高峰时,可在上游环节按分体式矩阵的流向进行初分。卸车时在对应的分体式矩阵上线操作,可以此平衡和降低本环节分拣场地压力

  ①对规划而说,数据分析、业务拆分和设计较复杂,需解决为何拆、怎么拆等问题。后期如因业务调整需改变矩阵的功能定位,也需经过严密规划分析

  从线层出线滑槽(可以是直滑槽或螺旋滑槽),最大可实现人工1分2。如下图6所示。

  基于场地最大化设计、分期投入和场地预留的考虑,3层式矩阵已成为新型分拣场地的主流设计模式。如下图7所示。

  ②每层出线均需保证包裹输送净空≥900mm③站台高一般为2400mm,最大可做到人工1分4

  矩阵的进线存在平行且反向的情况。倒插进线既可设在边侧也可设在矩阵中间,但需避免干涉。反向倒插式属于同向顺入式的简单变形。如下图8进线为反向倒插入矩阵。

  进入场地的进线相对不靠近同侧也不在同方向。在无足够空间可将进线方向调整为同向,或调整为同向需加大输送线使用量的情况下,优先考虑反向倒插。

  矩阵设在库房相对靠中间的区域,出线往矩阵的相反两侧延伸,整体动向为2个 “L”型。如上图1所示就属于双侧多爪式。

  因为矩阵分拣区设在库房相对靠中间的区域,可直接往两侧延伸。相对而言,输送线使用较少,输送距离较短。

  矩阵设在库房边侧或靠墙的区域,出线往矩阵的同侧方向延伸,整体动向为1个 “L”型。如下图9所示。

  矩阵进线口只能设在边侧或靠墙区域的场景(例如只有此处的回转能满足挂车停靠或连廊输送线在边侧接入的情况)。

  传统的模式下,矩阵中的流向分拣由人工完成。在矩阵分拣区可由拨货站台上的分拣人员将矩阵包裹经滑槽(已设定对应的滑槽号)拨至对应出线(推/拉动作)。

  件型分离拨口和流向拨口均需设置分拣滑槽,预分拣拨口一般只需设置分拣站台。

  件型较为多样复杂,且到货卸车货量较集中难以实现单件流的场景。因为是人工操作,故也具备一定柔性,可设备份拨口。常态货量不高时,各出线组滑槽,在大促时再启动备份滑槽。

  ②理论上,从上游至下游,各个拨口的分拣效率呈递增的趋势(上游流量下游流量)

  前端设置拉距段(拉开包裹间距,保证单件流,一般包裹间距300-400mm)和高速扫描段后,可在矩阵分拣区或出线处通过设置分流器(摆轮、模组带等)、摆臂、推臂或分拣机(业内已有在矩阵分拣区或出线设置直线交叉带的案例)来实现矩阵自动流向分拣。

  与自动化分拣的关系随着人工成本的上涨和处理效率要求的提高,自动化应用的趋势已越来越明显。矩阵之于自动化分拣,主要存在模块集成、功能叠加和功能备份等3种关系。

  最常见的场景是在件型分离后,中件直接由矩阵完成分拣,小件则被拨离汇合至自动化分拣系统(如交叉带分拣机、翻板AGV机器人、落袋式分拣机等)完成分拣集包(集包后为中大件),最后再回包至矩阵分拣。场地将业务拆分给矩阵和自动化,这里二者是叠加关系。

  平行备份的关系,例如在中件自动化(如中件交叉带)的场景。常态分拣机可满足需求时,所有包裹可先经矩阵(但不操作分拣)再进入自动化系统,在分拣机故障、大促或常态爆量的情况下,可直接在前端的矩阵完成分拣操作,实现高效自动化和柔性化的结合。

  在快递行业,处理能力是吞吐能力的一种小时维度的描述。对矩阵而言,就是小时分拣的包裹数。不考虑与自动化的拆分和交互,假设矩阵的进线数为x,每条进线处理能力为a。出线数为y,每条出线处理能力为b。矩阵分拣区有z个人工/自动化分拣区,每个分拣模块的分拣效率为c。则矩阵系统处理能力(瓶颈能力)为:C=min(a*x,b*y,c*z);则矩阵系统的平衡率为:

  行业内曾有人认为未来交叉带分拣机等自动化将取代矩阵分拣。笔者从规划的角度出发,认为这种想法未免片面。首先,任何自动化和非自动化的应用并无取代或好坏之说,最终都得回归到最根本的3点,那就是场景、效率和成本。基于场景匹配的前提,且能实现效率和成本最优的模式,才是最适合该场地的解决方案。其次,正如前面介绍到的,

  觉得矩阵在未来行业的发展中还将继续发挥重要作用,甚至演变出更多的模式,让我们拭目以待吧!

  【声明】:我们对文中观点保持中立,对所包含内容的准确性、可靠性或者完整性不提供任何明示或暗示的保证,请仅作参考。如有侵权请及时联系我们删除。

  声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。

https://www.invabio.com/wuliuguanli/372.html

最火资讯